Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

TRIBOLOGICAL BEHAVIOR OF THIN NANO TUNGSTEN CARBIDE FILM DEPOSITED ON 316L STAINLESS STEEL SURFACE

    https://doi.org/10.1142/S0218625X19500276Cited by:11 (Source: Crossref)

    This study presents the tribological behavior of austenitic 316L Stainless Steel (SS) coated with nano Tungsten Carbide (WC). The nano WC particles were prepared by mechano chemical method. The tungsten and toluene have been ball milled for 40h led to the synthesis of WC nano particles. An average particles size of 48nm was achieved. The prepared nano WC particles were deposited on 316L SS substrate as a thin film using DC magnetron sputtering process. The thickness of the nano WC coating was 5μm. The synthesized nano WC particles and the thin nano WC film are characterized using Scanning Electron Microscope (SEM), X-ray Diffraction (XRD) and Energy Dispersive X-ray Analysis (EDAX) technique. Vickers microhardness test was conducted to evaluate the microhardness of the thin film. A high microhardness value of 2242 HV10 was observed. The coated specimens are subjected to wear test using pin on disc setup and the tribological parameters such as friction and wear are analyzed. The results were compared with uncoated 316L SS specimen and micro WC particles coated 316L SS. The nano WC coated 316L SS possess high hardness and better wear resistance when compared with 316L SS and micro WC coated 316L SS specimen.