STUDY OF FORMATION OF DEFECTS/DEFECT CLUSTERS IN NICKEL NANOWIRES
Abstract
In this paper, formation of defects/defect clusters in nickel nanowires (Ni-NWs) due to interaction of a 60 kilo-electron-volt (keV) beam of proton (H+) ions is studied. Ni-NWs are exposed to various fluencies of H+ ions ranging between 1.5×1015 and 1.5×1017ions/cm2. The analysis of pristine and H+ ion-irradiated Ni-NWs samples is mainly done using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. Stopping range of ions in matter (SRIM) simulation software is employed to verify the production of defect clusters in Ni-NWs theoretically. Furthermore, insight of creation of defects in Ni-NWs due to interaction of low energy H+ ions in keV range is made using the theory of collision cascade effect. The study of defect clusters induced in Ni-NWs under H+ ions beam irradiation is essential for application of Ni-NW-based nanodevices in harsh environment containing plenty of H+ ions such as for use in spacecraft equipped for space missions.