World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SELECTED BIS-THIADIAZOLE: SYNTHESIS AND CORROSION INHIBITION STUDIES ON MILD STEEL IN HCL ENVIRONMENT

    https://doi.org/10.1142/S0218625X20500146Cited by:19 (Source: Crossref)

    The inhibition effect of synthesized corrosion inhibitor namely 5,5-(1,4-phenylene)bis(N-phenyl-1,3,4-thiadiazol-2-amine) (PBPA) on the corrosion of mild steel in 1-M hydrochloric acid environment are examined by gravimetric techniques at various temperature (303–343 K). The synthesized inhibitor concentrations are 0.1–0.5mM. The inhibition efficiency increased with the increase of the inhibitor concentration. The inhibition efficiency reached 94% at the highest studied concentration of 0.5mM for 5h of immersion time and 303K. Moreover, the inhibition efficiency decreased with the temperature increase. The adsorption of tested inhibitor molecules on the surface of mild steel follows the Langmuir adsorption isotherm. The studied inhibitor molecules showed excellent inhibition since PBPA molecules have nitrogen and sulfur atoms in addition to phenyl and thiadiazol rings which were linked together in conjugation system.