World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PROPORTIONAL EFFECT IN SbSi/N-DOPED GRAPHENE NANOCOMPOSITE PREPARATION FOR HIGH-PERFORMANCE LITHIUM-ION BATTERIES

    https://doi.org/10.1142/S0218625X21501055Cited by:2 (Source: Crossref)

    Lithium-ion batteries (LIBs) have become commercialized technologies for the modern and future world, but commercial batteries using graphite still have a low specific capacity and are concerned with safety issues. Silicon (Si) and antimony (Sb) nanocomposites have the tendency to be synthesized as high-energy-density anode materials which can be a solution for the above-mentioned problems. This work reported the synthesis methods and characterization of Sb and Si composited with nitrogen-doped graphene (SbSi/NrGO) by facile chemical method and thermal treatment. Si was obtained by magnesiothermic reduction of SiO2 derived from rice husk, waste from the agricultural process. To study the phases, particle distributions, and morphologies, all prepared composites were characterized. In this experiment, the phase compositions were confirmed as c-Si, t-Si, SiC, Sb, and shifted peaks of expanded C which were caused by NrGO synthesis. Interestingly, a good distribution of Si and Sb particles on the NrGO surface was obtained in 15Sb15Si/NrGO composition. It could be due to appropriate Sb and Si contents on the NrGO surface area in composite materials. Morphological identification of synthesized products represented the Sb and Si particles in nanoscale dispersed on thin wrinkled-paper NrGO. These results suggested that the synthesis method in this paper is appropriate to prepare SbSi/NrGO nanocomposites to be used as high-performance anode materials in high-performance LIBs for advanced applications.