World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

DEEP CRYOGENIC TREATED HIGH CARBON STEEL BLADES: TRIBOLOGICAL, MORPHOLOGICAL, AND ECONOMIC ANALYSIS

    https://doi.org/10.1142/S0218625X22410025Cited by:1 (Source: Crossref)
    This article is part of the issue:

    Straw combines are intended to process the remaining harvested straw. When cut at high temperatures and in abrasive conditions, the cutting blade of straw combines undergoes substantial surface deterioration. This deterioration shortens the blade’s lifespan and increases the cutting cost of the machine. In recent decades, cryogenic treatments have played a significant role in enhancing material properties. In this paper, cryogenic treatment is utilized to boost the wear resistance of straw combine blades in the current investigation. The performance of cryogenic treatment was tested in the laboratory using the pin-on-disc wear tester with sample type, load, sliding velocity, and time serving as process factors and wear loss as the response parameter. The smoothness of the cryogenically-treated sample’s surface is certified through morphological examination. Specific wear rate and field emission scanning electron microscope (FE-SEM) indicated that cryogenic treatment enhances the grain structure and intermolecular interaction of the specimen, resulting in an increase in wear resistance. As opposed to the untreated specimen, the wear on the treated surface is uniform over the entire surface, as demonstrated by FE-SEM analysis. The grain structure and intermolecular bonding of the specimen were improved as a result of the cryogenic treatment. The cryogenic treatment increased the cost of the cutter bar and chopping cylinder blades by 9.38% and 13.61%, respectively, compared to untreated blades, but the increased cost was fully offset by the longer blade life.