World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A STUDY ON THE MICROSTRUCTURE, WEAR, AND INDENTATION TOUGHNESS OF ANODIZED ALUMINUM OXIDE LAYER MODIFIED WITH A NEW ADDITIVE

    https://doi.org/10.1142/S0218625X23500853Cited by:0 (Source: Crossref)

    In this study, lemon juice at different concentrations as a new additive was poured into the bath of the anodizing process to enhance the mechanical properties of the manufactured aluminum oxide layers. X-ray diffraction (XRD) and field-emission scanning electron microscopy were utilized to detect formed phases and microstructure, respectively. To investigate mechanical properties, microhardness, indentation toughness, and wear tests of various aluminum oxide layers were performed. The XRD patterns showed a crystalline phase of γγ-Al2O3 for all oxide layers. The microhardness of modified layers increased up to 62.2% compared to the unmodified layer. However, by increasing the additive concentration to 2.5 vol%, the hardness decreased. This was based on increasing the pore size of layers. The lowest friction coefficient with a value of 0.53, the lowest wear rate, and the highest indentation toughness was also related to the modified aluminum oxide layer when the concentration of the additive in the bath was 0.3 vol%. For this modified layer, the value of COF/HH was the lowest, and the pore size of 50 nm was the lowest among the layers.