World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CHARACTERIZATION OF SURFACE, SUBSURFACE DAMAGE AND THEIR EFFECT ON FATIGUE LIFE AFTER MACHINING OF AEROSPACE-GRADE ALUMINUM ALLOY (Al 6082-T6)

    https://doi.org/10.1142/S0218625X25500143Cited by:0 (Source: Crossref)

    Aluminum alloys are widely used in the automotive and aerospace industries due to their lower mass-to-strength ratio than other metallic alloys. Apart from their inherent properties, aluminum alloys like other metallic alloys show a significant change in their mechanical properties according to the machining parameters. The research literature on obtaining optimum mechanical properties of aluminum alloys that undergo machining is very limited. Moreover, the combined effect of several parameters on the machinability of aluminum alloys has not yet been explored. In this paper, the effect of three machining parameters (Depth of Cut (DoC)), feed rate (FR), and cutting speed (CS) on the subsurface damage and fatigue life of aerospace-grade aluminum alloy (Al-6082-T6) is observed. Samples are prepared using a full fractional approach to effectively capture the effect of all input parameters. Thereafter, samples were subjected to surface roughness, micro-hardness, and fatigue life tests. Results of surface roughness and micro-hardness tests are compared with fatigue life. The general linear model was employed to capture the percentage effect of each input parameter on the output parameters. The results showed that DoC was the main contributing factor that caused subsurface damage, while surface roughness and fatigue life were mainly affected by FR and CS. Optical microscope images showed a white layer formation that had higher hardness than the base metal. Overall, this research work proposes the input parameters that can be used to achieve minimum surface damage and fatigue life.