THE AUGMENTED MULTIRESOLUTION REEB GRAPH APPROACH FOR CONTENT-BASED RETRIEVAL OF 3D SHAPES
Abstract
This article presents a 3D shape matching method for 3D mesh models applied to content-based search in database of 3D objects. The approach is based on the multiresolution Reeb graph (MRG) proposed by Hilaga et al.1 MRG provides a rich representation of shapes able in particular to embed the object topology. In our framework, we consider 3D mesh models of various geometrical complexity, of different resolution, and when available with color texture map. The original approach, mainly based on the 3D object topology, is not accurate enough to obtain satisfying matching. Therefore we propose to reinforce the topological consistency conditions of the matching and to merge within the graph geometrical and visual information to improve matching and calculation of shape similarity between models. Besides, all these new attributes can be freely weighted to fit the user requirements for object retrieval. We obtain a flexible multiresolutional and multicriteria representation that we called augmented multiresolution Reeb graph (aMRG). The approach has been tested and compared with other methods. It reveals very performant for the retrieval and the classification of similar 3D shapes.