WIGNER FUNCTION APPROACH TO OSCILLATING SOLUTIONS OF THE 1D-QUINTIC NONLINEAR SCHRÖDINGER EQUATION
Abstract
In this paper, we study oscillating solutions of the 1D-quintic nonlinear Schrödinger equation with the help of Wigner's quasiprobability distribution in quantum phase space. An "absolute squeezing property", namely a periodic in time total localization of wave packets at some finite spatial points without violation of the Heisenberg uncertainty principle, is analyzed in this nonlinear model.