World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

WEIGHTED MONTE CARLO: A NEW TECHNIQUE FOR CALIBRATING ASSET-PRICING MODELS

    https://doi.org/10.1142/S0219024901000882Cited by:64 (Source: Crossref)

    A general approach for calibrating Monte Carlo models to the market prices of benchmark securities is presented. Starting from a given model for market dynamics (price diffusion, rate diffusion, etc.), the algorithm corrects price-misspecifications and finite-sample effects in the simulation by assigning "probability weights" to the simulated paths. The choice of weights is done by minimizing the Kullback–Leibler relative entropy distance of the posterior measure to the empirical measure. The resulting ensemble prices the given set of benchmark instruments exactly or in the sense of least-squares. We discuss pricing and hedging in the context of these weighted Monte Carlo models. A significant reduction of variance is demonstrated theoretically as well as numerically. Concrete applications to the calibration of stochastic volatility models and term-structure models with up to 40 benchmark instruments are presented. The construction of implied volatility surfaces and forward-rate curves and the pricing and hedging of exotic options are investigated through several examples.