World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON ROBUSTNESS OF THE BLACK–SCHOLES PARTIAL DIFFERENTIAL EQUATION MODEL

    https://doi.org/10.1142/S0219024916500138Cited by:0 (Source: Crossref)

    When the discretely adjusted option hedges are constructed by the continuous-time Black–Scholes delta, then the hedging errors appear. The first objective of the paper is to consider a discrete-time adjusted delta, such that the hedging error can be reduced. Consequently, a partial differential equation for option valuation associated with the problem is derived and solved.

    The second objective is to compare the obtained results with the results given by the Black–Scholes formula. The obtained option values may be higher than those given by the Black–Scholes formula, however, unless the option is near expiry, the difference is relatively small.