World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

QUANTUM ENTROPY AND INFORMATION IN DISCRETE ENTANGLED STATES

    https://doi.org/10.1142/S0219025701000425Cited by:14 (Source: Crossref)

    Quantum entanglements, describing truly quantum couplings, are studied and classified for discrete compound states. We show that classical-quantum correspondences such as quantum encodings can be treated as d-entanglements leading to a special class of separable compound states. The mutual information for the d-compound and for q-compound (entangled) states leads to two different types of entropies for a given quantum state. The first one is the von Neumann entropy, which is achieved as the supremum of the information over all d-entanglements, and the second one is the dimensional entropy, which is achieved at the standard entanglement, the true quantum entanglement, coinciding with a d-entanglement only in the commutative case. The q-conditional entropy and q-capacity of a quantum noiseless channel, defined as the supremum over all entanglements, is given as the logarithm of the dimensionality of the input von Neumann algebra. It can double the classical capacity, achieved as the supremum over all semiquantum couplings (d-entanglements, or encodings), which is bounded by the logarithm of the dimensionality of a maximal Abelian subalgebra. The entropic measure for essential entanglement is introduced.