HARMONIC ANALYSIS ON CONFIGURATION SPACE I: GENERAL THEORY
Abstract
We develop a combinatorial version of harmonic analysis on configuration spaces over Riemannian manifolds. Our constructions are based on the use of a lifting operator which can be considered as a kind of (combinatorial) Fourier transform in the configuration space analysis. The latter operator gives us a natural lifting of the geometry from the underlying manifold onto the configuration space. Properties of correlation measures for given states (i.e. probability measures) on configuration spaces are studied including a characterization theorem for correlation measures.