World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Dynamical stability of Minkowski space in higher order gravity

    https://doi.org/10.1142/S0219887815500942Cited by:4 (Source: Crossref)

    We discuss the Minkowski stability problem in modified gravity by using dynamical system approach. The method to investigate dynamical stability of Minkowski space is proposed. This method was applied for some modified gravity theories, such as f(R) gravity, f(R)+αR□R gravity and scalar–tensor gravity models with non-minimal kinetic coupling. It was shown that in the case of f(R) gravity Minkowski solution is asymptotically stable in ghost-free (f′ > 0) and tachyon-free (f″ > 0) theories in expanding Universe with respect to isotropic and basic anisotropic perturbations. In the case of higher order gravity with αR□R correction conditions of Minkowski stability with respect to isotropic perturbations are significantly different: f′(0) < 0, f″(0) < 0 and 3f′(0) + f″(0)2/α > 0. And in the case of scalar-tensor gravity with non-minimal kinetic coupling Minkowski solution is asymptotically stable in expanding Universe with respect to isotropic perturbations of metric. Moreover, the developed method may be used for finding additional restrictions on parameters of different modified gravity theories.

    AMSC: 83C10, 83C20, 37C25, 37C75