CONSTRUCTING EXTENSIONS OF CP-MAPS VIA TENSOR DILATIONS WITH THE HELP OF VON NEUMANN MODULES
Abstract
We apply Hilbert module methods to show that normal completely positive maps admit weak tensor dilations. Appealing to a duality between weak tensor dilations and extensions of CP-maps, we get an existence proof for certain extensions. We point out that this duality is part of a far reaching duality between a von Neumann bimodule and its commutant in which other dualities, known and new, also find their natural common place.