EXOTIC LAPLACIANS AND ASSOCIATED STOCHASTIC PROCESSES
Abstract
In this paper, we give a decomposition of the space of tempered distributions by the Cesàro norm, and for any we construct directly from the exotic trace an infinite dimensional separable Hilbert space Hc,2a-1 on which the exotic trace plays the role as the usual trace. This implies that the Exotic Laplacian coincides with the Volterra–Gross Laplacian in the Boson Fock space Γ(Hc,2a-1) over the Hilbert space Hc,2a-1. Finally we construct the Brownian motion naturally associated to the Exotic Laplacian of order 2a-1 and we find an explicit expression for the associated heat semigroup.
An errata has been published.