ON UNIQUENESS OF MILD SOLUTIONS FOR DISSIPATIVE STOCHASTIC EVOLUTION EQUATIONS
Abstract
In the semigroup approach to stochastic evolution equations, the fundamental issue of uniqueness of mild solutions is often "reduced" to the much easier problem of proving uniqueness for strong solutions. This reduction is usually carried out in a formal way, without really justifying why and how one can do that. We provide sufficient conditions for uniqueness of mild solutions to a broad class of semilinear stochastic evolution equations with coefficients satisfying a monotonicity assumption.