Classification and GNS-construction for general universal products
Abstract
It is known that there are exactly five natural products, which are universal products fulfilling two normalization conditions simultaneously. We classify universal products without these extra conditions. We find a two-parameter deformation of the Boolean product, which we call (r, s)-products. Our main result states that, besides degnerate cases, these are the only new universal products. Furthermore, we introduce a GNS-construction for not necessarily positive linear functionals on algebras and study the GNS-construction for (r, s)-product functionals.