Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Quantum Strassen’s theorem

    https://doi.org/10.1142/S0219025720500204Cited by:5 (Source: Crossref)

    Strassen’s theorem circa 1965 gives necessary and sufficient conditions on the existence of a probability measure on two product spaces with given support and two marginals. In the case where each product space is finite, Strassen’s theorem is reduced to a linear programming problem which can be solved using flow theory. A density matrix of bipartite quantum system is a quantum analog of a probability matrix on two finite product spaces. Partial traces of the density matrix are analogs of marginals. The support of the density matrix is its range. The analog of Strassen’s theorem in this case can be stated and solved using semidefinite programming. The aim of this paper is to give analogs of Strassen’s theorem to density trace class operators on a product of two separable Hilbert spaces, where at least one of the Hilbert spaces is infinite-dimensional.

    Communicated by Yun Gang Lu

    AMSC: 15A69, 15B57, 46N50, 47B10, 81P40, 81Q10, 90C22, 90C25