World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Central Limit Theorems and Asymptotic Spectral Analysis on Large Graphs

    https://doi.org/10.1142/S0219025798000144Cited by:10 (Source: Crossref)

    Regarding the adjacency matrix of a graph as a random variable in the framework of algebraic or noncommutative probability, we discuss a central limit theorem in which the size of a graph grows in several patterns. Various limit distributions are observed for some Cayley graphs and some distance-regular graphs. To obtain the central limit theorem of this type, we make combinatorial analysis of mixed moments of noncommutative random variables on one hand, and asymptotic analysis of spectral structure of the graph on the other hand.

    Supported by Grant-in-Aid for Scientific Research (No. 09740108), The Ministry of Education, Science, Sports and Culture, Japan.