World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE MARGINAL OPERATORS FOR GAMES ON CONVEX GEOMETRIES

    https://doi.org/10.1142/S0219198906000837Cited by:3 (Source: Crossref)

    In this work we study situations in which communication among the players is not complete and it is represented by a family of subsets of the set of players. Although several models of partial cooperation have been proposed, we shall follow a model derived from the work of Faigle and Kern. We define the games on convex geometries and introduce marginal worth vectors and quasi-supermodular games. Furthermore, we analyze some properties of the marginal operators on the space of games on convex geometries.