Erdős–Rényi law of large numbers in the averaging setup
Abstract
We extend the Erdős–Rényi law of large numbers to the averaging setup both in discrete and continuous time cases. We consider both stochastic processes and dynamical systems as fast motions whenever they are fast mixing and satisfy large deviations estimates. In the continuous time case we consider flows with large deviations estimates which allow a suspension representation and it turns out that fast mixing of corresponding base transformations suffices for our results.