World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE STRUCTURE OF HARMONIC MORPHISMS WITH TOTALLY GEODESIC FIBRES

    https://doi.org/10.1142/S0219199704001409Cited by:1 (Source: Crossref)

    The structure of local and global harmonic morphisms between Riemannian manifolds, with totally fibres, is investigated. It is shown that non-positive curvature of the domain obstructs the existence of global harmonic morphisms with totally geodesic fibres and the only such maps from compact Riemannian manifolds of non-positive curvature are, up to a homothety, totally geodesic Riemannian submersions. Similar results are obtained for local harmonic morphisms with totally geodesic fibres from open subsets of non-negatively curved compact and non-compact manifolds. During the course, we prove non-existence of submersive harmonic morphisms with totally geodesic fibres from some important domains, for instance from compact locally symmetric spaces of non-compact type and open subsets of symmetric spaces of compact type.

    AMSC: 58E20