World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE DEFINITIONS OF SOBOLEV AND BV SPACES INTO SINGULAR SPACES AND THE TRACE PROBLEM

    https://doi.org/10.1142/S0219199707002502Cited by:17 (Source: Crossref)

    The purpose of this paper is to relate two notions of Sobolev and BV spaces into metric spaces, due to Korevaar and Schoen on the one hand, and Jost on the other hand. We prove that these two notions coincide and define the same p-energies. We review also other definitions, due to Ambrosio (for BV maps into metric spaces), Reshetnyak and finally to the notion of Newtonian–Sobolev spaces. These last approaches define the same Sobolev (or BV) spaces, but with a different energy, which does not extend the standard Dirichlet energy. We also prove a characterization of Sobolev spaces in the spirit of Bourgain, Brezis and Mironescu in terms of "limit" of the space Ws,p as s → 1, 0 < s < 1, and finally following the approach proposed by Nguyen. We also establish the regularity of traces of maps in Ws,p (0 < s ≤ 1 < sp).

    AMSC: 46E35