World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Extremal solutions to Liouville–Gelfand type elliptic problems with nonlinear Neumann boundary conditions

    https://doi.org/10.1142/S0219199714500163Cited by:1 (Source: Crossref)

    Consider the Liouville–Gelfand type problems with nonlinear Neumann boundary conditions

    where Ω ⊂ ℝN, N ≥ 2, is a smooth bounded domain, f : [0, +∞) → (0, +∞) is a smooth, strictly positive, convex, increasing function with superlinear at +∞, and λ > 0 is a parameter. In this paper, after introducing a suitable notion of weak solutions, we prove several properties of extremal solutions u* corresponding to λ = λ*, called an extremal parameter, such as regularity, uniqueness, and the existence of weak eigenfunctions associated to the linearized extremal problem.

    AMSC: 35J20, 35J25, 35J60