Dynamics and Synchronization of a Novel Hyperchaotic System Without Equilibrium
Abstract
A novel four-dimensional continuous-time autonomous hyperchaotic system which has no equilibrium is proposed in this paper. By starting from a third-order chaotic system and introducing a further variable performing state feedback, a four-dimensional system exhibiting hyperchaos is obtained. The basic dynamical properties of this system are investigated, such as equilibria and stability, Lyapunov exponent spectrum, and bifurcation diagrams. Furthermore, synchronization via diffusive coupling or control has been addressed. In the latter, parameter identification and synchronization are performed simultaneously. The circuit realization and experimental results are also presented.