Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The initial-boundary value problem for the Schrödinger–Korteweg–de Vries system on the half-line

    https://doi.org/10.1142/S0219199718500669Cited by:10 (Source: Crossref)

    We prove local well-posedness for the initial-boundary value problem (IBVP) associated to the Schrödinger–Korteweg–de Vries system on right and left half-lines. The results are obtained in the low regularity setting by using two analytic families of boundary forcing operators, one of these families being developed by Holmer to study the IBVP associated to the Korteweg–de Vries equation [The initial-boundary value problem for the Korteweg–de Vries equation, Comm. Partial Differential Equations31 (2006) 1151–1190] and the other one was recently introduced by Cavalcante [The initial-boundary value problem for some quadratic nonlinear Schrödinger equations on the half-line, Differential Integral Equations30(7–8) (2017) 521–554] in the context of nonlinear Schrödinger with quadratic nonlinearities.

    AMSC: 35Q53, 35Q55, 35B65