Hierarchical exact controllability of semilinear parabolic equations with distributed and boundary controls
Abstract
We present some exact controllability results for parabolic equations in the context of hierarchic control using Stackelberg–Nash strategies. We analyze two cases: in the first one, the main control (the leader) acts in the interior of the domain and the secondary controls (the followers) act on small parts of the boundary; in the second one, we consider a leader acting on the boundary while the followers are of the distributed kind. In both cases, for each leader, an associated Nash equilibrium pair is found; then, we obtain a leader that leads the system exactly to a prescribed (but arbitrary) trajectory. We consider linear and semilinear problems.