Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Well-posedness and analyticity of solutions for the sixth-order Boussinesq equation

    https://doi.org/10.1142/S0219199724500056Cited by:1 (Source: Crossref)

    In this paper, the sixth-order Boussinesq equation is studied. We extend the local well-posedness theory for this equation with quadratic and cubic nonlinearities to the high dimensional case. In spite of having the “bad” fourth term Δu in the equation, we derive some dispersive estimates leading to the existence of local solutions which also improves the previous results in the cubic case. In addition, we show persistence of spatial analyticity of solutions for the cubic nonlinearity.

    AMSC: 35B30, 35Q53, 76B15, 35L70, 37K10