World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PARALLEL GAUSS-SEIDEL ON A TORUS NETWORK-ON-CHIP ARCHITECTURE

    https://doi.org/10.1142/S0219265912500016Cited by:1 (Source: Crossref)

    Network-on-chip multicore architectures with a large number of processing elements are becoming a reality with the recent developments in technology. In these modern systems the processing elements are interconnected with regular network-on-chip (NoC) topologies such as meshes and trees. In this paper we propose a parallel Gauss-Seidel (GS) iterative algorithm for solving large systems of linear equations on a torus NoC architecture. The proposed parallel algorithm is O(Nn2/k2) time complexity for solving a system with matrix of order n on a k × k torus NoC architecture with N iterations assuming n and N are large compared to k (i.e. for large linear systems that require a large number of iterations). We show that under these conditions the proposed parallel GS algorithm has near optimal speedup.