World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Resilient Tree-Based Video Streaming with a Guaranteed Latency

    https://doi.org/10.1142/S0219265919500099Cited by:1 (Source: Crossref)

    In this paper, we propose a method to organize a tree-based Peer-to-Peer (P2P) overlay for video streaming which is resilient to the temporal reduction of the upload capacity of a node. The basic idea of the proposed method is: (1) to introduce the redundancy to a given tree-structured overlay, in such a way that a part of the upload capacity of each node is proactively used for connecting to a sibling node, and (2) to use those links connecting to the siblings to forward video stream to the siblings. More specifically, we prove that even if the maximum number of children of a node temporally reduces from m to mk for some 1 ≤ km − 1, the proposed method continues the forwarding of video stream to all of m children in at most 2x hops, where x is the smallest integer satisfying mkm/2x. We also derive a sufficient condition to bound the increase of the latency by an additive constant. The derived sufficient condition indicates that if each node can have at least six children in the overlay, the proposed method increases the latency by at most one, provided that the number of nodes in the overlay is at most 9331; namely the proposed method guarantees the delivery of video stream with a nearly optimal latency.

    An earlier version of this paper was presented as “Resilient Peer-to-Peer Video Streaming with a Guaranteed Latency” by the same author in CANDAR 2018.