World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

VIBRATION AND STABILITY BEHAVIOR OF LAMINATED COMPOSITE CURVED PANELS WITH CUTOUT UNDER PARTIAL IN-PLANE LOADS

    https://doi.org/10.1142/S0219455405001507Cited by:23 (Source: Crossref)

    The present paper is concerned with the vibration, buckling and dynamic instability behavior of laminated composite, cross-ply, doubly-curved panels with a central circular hole subjected to in-plane static and periodic compressive loads. A generalized shear deformable Sanders' theory is used to model the curved panels, considering the effects of transverse shear deformation and rotary inertia. Bolotin's approach is used for studying the dynamic instability regions of doubly-curved panels. The effects of non-uniform edge loads, curvature with different cutout ratios, static and dynamic load factors, and lamination parameters on curved panels are investigated with the results discussed.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures