AXI-SYMMETRIC WAVE PROPAGATION OF CARBON NANOTUBES WITH NON-LOCAL ELASTIC SHELL MODEL
Abstract
A non-local elastic shell model is proposed for the first time in this study for considering the small-scale effect in axi-symmetric wave propagation in carbon nanotubes (CNTs). Two coupled radial and longitudinal modes, and one decoupled torsional mode, are derived from the developed non-local shell model. The small-scale effect on wave propagation is numerically studied and discussed. In addition, the cut-off frequency based on the non-local shell model is obtained, which is found to be free of the small-scale effect. It is interesting to note that only one asymptotic phase velocity exists in the CNTs using the non-local shell model, whereas two asymptotic phase velocities can be predicted using the classical or local elastic shell model. It is hoped the research presented herein can be used as a benchmark for future studies on the wave propagation of CNTs with non-local continuum models.
Remember to check out the Most Cited Articles! |
---|
Remember to check out the structures |