OBSERVABLES IN LOW-ENERGY SUPERSTRING MODELS
Abstract
We compile phenomenological constraints on the minimal low-energy effective theory which can be obtained from the superstring by Calabi-Yau compactification. Mixing with the single additional neutral gauge boson in this model reduces the mass of the conventional Z0, Field vacuum expectation values are constrained by the experimental upper bound on this shift. Then, requiring the sneutrino mass squared to be positive constrains the scale of supersymmetry breaking more than do lower bounds on the masses of new charged particles and of sparticles. More model-dependent constraints follow from the “naturalness” requirement that observables do not depend sensitively on input parameters. We find a preference for the second neutral gauge boson to weigh ≲320 GeV, GeV and
GeV. Dynamical generation of the gauge hierarchy is possible if mt≲70 GeV, with lower values of mt being favoured.