World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An Analytical Solution for Free Flexural Vibration of a Thin Cylindrical Shell Submerged in Acoustic Half-Space Bounded by a Free Surface

    https://doi.org/10.1142/S0219455418500426Cited by:4 (Source: Crossref)

    An analytical solution is proposed for the free flexural vibration of a finite cylindrical shell submerged in half-space bounded by a free surface in the low frequency range. The motion of the shell is described by the Flügge shell theory and the fluid surrounding the shell is assumed to be an acoustic media. The free surface effect is considered by satisfying the pressure release boundary condition. The accuracy of the present method is verified through comparison with the finite element solution. To throw light on the influence mechanism of free surface on the coupled modal frequencies, a modal added mass is introduced and calculated. Numerical results show that when the shell is close to the free surface, the presence of free surface will make a negative contribution to the modal added mass and finally result in the corresponding increase of the coupled modal frequencies. But the free surface effect will decrease when the immersion depth of the cylindrical shell increases. Finally, the free surface effect can be neglected if the immersion depth is higher than four times the shell radius. This conclusion is helpful to select proper test environment for an experiment on the dynamic characteristics of submerged cylindrical shells.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures