World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GBT-Based Vibration Analysis Using the Exact Element Method

    https://doi.org/10.1142/S0219455418500682Cited by:8 (Source: Crossref)

    Generalized Beam Theory (GBT), intended to analyze the structural behavior of prismatic thin-walled members and structural systems, expresses the member deformed configuration as a combination of cross-section deformation modes multiplied by the corresponding longitudinal amplitude functions. The determination of the latter, often the most computer-intensive step of the analysis, is almost always performed by means of GBT-based “conventional” 1D (beam) finite elements. This paper presents the formulation, implementation and application of the so-called “exact element method” in the framework of GBT-based elastic free vibration analyses. This technique, originally proposed by Eisenberger (1990), uses the power series method to solve the governing differential equations and obtains the vibration eigenvalue problem from the boundary terms. A few illustrative numerical examples are presented, focusing mainly on the comparison between the combined accuracy and computational effort associated with the determination of vibration solutions with the exact and conventional GBT-based (finite) elements. This comparison shows that the GBT-based exact element method may lead to significant computational savings, particularly when the vibration modes exhibit large half-wave numbers.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures