World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Evolving Basis for the Design of Light Gauge Steel Systems

    https://doi.org/10.1142/S0219455420410084Cited by:4 (Source: Crossref)
    This article is part of the issue:

    The importance of allowing for the many different types of structural interaction that have an effect on the performance of light gauge members when used in practical situations is emphasized. A distinction is drawn between internal interactions involving the various plate elements of the steel profiles and external interactions involving the other components in the system. Although full-scale testing of representative systems can capture this behavior, the costs involved make this an impractical general basis for design; codified methods generally consider only isolated plates within members and isolated members within systems, thereby neglecting the potentially beneficial effects of both forms of interaction. Properly used, modern methods of numerical analysis offer the potential to systematically allow for both forms of interaction — provided the numerical models used have been adequately validated against suitable tests. The use of such an approach is explained and illustrated for three commonly used structural systems: roof purlins, floor beams, and columns in stud walls. In each case, it is shown that, provided sufficient care is taken, the numerical approach can yield accurate predictions of the observed test behavior. The subsequently generated large portfolio of numerical results can then provide clear insights into the exact nature of the various interactions and, thus, form the basis for more realistic design approaches that are both more accurate in their predictions and which lead to more economic designs. Building on this, modifying existing arrangements so as to yield superior performance through specific modifications is now possible. Two such examples, one in which improved interconnection between the components in a system is investigated and a second in which prestressing is shown to provide substantial enhancement for relatively small and simple changes, are presented.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures