World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Numerically Scaled Spring-Friction System and Validation by Shaking Table Test

    https://doi.org/10.1142/S0219455421500929Cited by:5 (Source: Crossref)

    The seismic isolation efficiency of different friction-based devices needs verification by shaking table test, but faces problems in scaling before the test due to their frictional nonlinearity. To solve the scaling problems, a simplified civil structure, isolated by a self-centering spring-friction device, was numerically scaled in different ways considering the effect of friction action. The seismic responses of the scaled models were scaled back to those of the prototype and compared with the seismic responses of the prototype. The scaling problems and solutions were validated by a shaking table test on simply supported bridges using friction pendulum bearings (FPBs). The results show that both the unscaled gravity on a shaking table and the unscaled non-uniform friction distribution cause an inaccurate friction force in the structural motion equations of scaled models, and thus causing the scaling errors. One new and valid solution, i.e. changing the friction coefficient and scaling the non-uniform friction distribution to keep an accurate friction force for the scaled models, is put forward to avoid the scaling errors thoroughly. Another new solution shows that an increasing peak ground acceleration (PGA) can increase the other forces, while weakening the ratio of inaccurate friction force in the structural motion equations of the scaled models, which therefore reducing the scaling errors of acceleration and relative displacement responses, but not the scaling errors of residual displacement responses. In addition, the time-varying friction, the interface separation and collision of bearings, and other complex factors are found to cause scaling errors and need further investigation.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures