World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Study on the EPSD of Wind-Induced Responses of the Sutong Bridge Using Harmonic Wavelets

    https://doi.org/10.1142/S0219455423400047Cited by:3 (Source: Crossref)
    This article is part of the issue:

    Many long-span bridges are located at typhoon prone regions. With the continuous increase of the bridge span, the typhoon-induced buffeting becomes more and more prominent. In this study, based on the structural health monitoring system installed in the Sutong Bridge, the recorded buffeting responses of the main girder during typhoons Damrey and Haikui were analyzed. The run test method demonstrated that the recorded acceleration responses can be regarded as zero-mean non-stationary random processes. Hence, to capture the energy distribution of the recorded data in the time-frequency domain, the evolutionary power spectral density (EPSD) estimation was conducted using efficient generalized harmonic wavelet (GHW) and filtered harmonic wavelet (FHW), respectively. Compared with the GHW, narrower wavelet bandwidth is required by the FHW to yield a compromise between the time and frequency resolution. For the FHW-based method, the power spectral density amplitudes of the averaging EPSDs are slightly larger for certain major frequency components than those obtained by the Pwelch method. Results show that the non-stationary features of the buffeting of long-span bridges during Typhoon events should be considered. This study can also provide references for non-stationary buffeting analysis of other long-span bridges during extreme wind events.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures