World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Disk Model Effect for Road Surface Roughness Using Convolution Method

    https://doi.org/10.1142/S0219455423400333Cited by:2 (Source: Crossref)
    This article is part of the issue:

    In most related studies on road surface roughness, the vehicle’s wheel is often using a contact point model rather than a disk model. This results in neglecting the wheel’s size and interaction with the road. Consequently, the vehicle’s response may not be genuinely reflected, especially for the massive topic of noise, vibration, and harshness (NVH). Unlike the existing approach targeting the power spectrum, this paper proposes a new convolution method to tackle the disk effect and operates directly on the spatial domain, i.e. road surface roughness. By using a designed periphery function, it can simulate the wheel geometry passing through road surface roughness. The periphery function acts as a filter to the road surface roughness that can filter out smaller oscillations. Some examples involving roughness from ISO 8608 standards were tested. It is shown herein that the proposed method can match the theoretical result (using the geometry method (GM)) not only in the spatial domain but also in the power spectral density (PSD). Since the convolution is performed under the spatial domain, the proposed method can directly apply the disk model to any existing road surface roughness with different spectral compositions in practice. Understanding the disk effect reduces the higher frequency of the vehicle’s response depending on roughness severity, which may significantly impact the vehicle design for ride comfort, road surface roughness extraction, bridge health monitoring using the drive-by method, etc.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures