World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Physics-Data Hybrid Framework to Develop Bridge Digital Twin Model in Structural Health Monitoring

    https://doi.org/10.1142/S0219455423400370Cited by:2 (Source: Crossref)
    This article is part of the issue:

    Digital twin aims to create a virtual model for a physical structure by combining measurement data in structural health monitoring. The most important feature is to achieve the physical structure-monitoring data synchronization. For this purpose, a physics-data hybrid framework to develop the bridge digital twin model in structural health monitoring is proposed in the paper. The physical base is firstly formed by the finite element model of the digital representation for the physical bridge that can fully incorporate both structural geometry and structural state. The data base is then built by all measurement data of the monitored bridge. By defining the context that is common to both physical base and data base, the mirror relationship between physical base and data base for the specified context is formulated. To achieve the best matching of the mirror relationship by minimizing process, the digital twin model in terms of the specified context can be developed. In such a way, the proposed framework integrates physical knowledge and data intelligence into one model. A demonstration of a simulated simply supported beam is provided to show how the digital twin model is developed by using proposed physics-data hybrid framework. It is found that the generated digital twin model is consistent with the current structural state of the beam. The presented physics-data hybrid framework helps in clearer understanding of the realization of digital twin model in structural health monitoring, providing a new perspective for smart bridge solutions.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures