World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Energy Absorption Characteristic of Biomimetic Gradient Hierarchical Multicellular Tubes Under Axial Impact

    https://doi.org/10.1142/S0219455425500300Cited by:2 (Source: Crossref)

    This paper introduces a biomimetic gradient hierarchical multicellular structure consisting of two tree-like fractal variants: one based on vertex connections (HCV) and the other based on wall connections (HCW). We investigate their mechanical behavior and deformation through numerical simulations. Our findings reveal that, irrespective of whether they have the same wall thickness or mass, second-order and third-order structures exhibit superior energy absorption capacity (EA) and crushing force efficiency (CFE) compared to first-order structures, resulting in significantly enhanced crashworthiness performance. In the case of HCV structures with identical wall thickness, the third-order structure outperforms the first-order structure by 79.73% in specific energy absorption (SEA) and by 38.51% in CFE. Similarly, for HCW structures, the third-order variant surpasses the first-order one by 45.57% in SEA and 28.39% in CFE. We also conduct a parametric study, exploring the influence of inner circle diameter, fractal coefficient, and fractal angle on the crashworthiness of biomimetic gradient hierarchical multicellular structures. We identify the optimal fractal coefficient and inner diameter distribution range for HCV when the fractal angle is 60. Lastly, we compare these structures with traditional multicellular tubes, demonstrating that biomimetic gradient hierarchical multicellular tubes achieve up to 50.34% higher SEA and 55.13% higher CFE. The results of this study offer valuable design insights for developing lightweight and efficient energy-absorbing structures.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures