Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Null Phase Assumption-Based Technique for Constructing the Target Model of Seismic Irregularity on High-Speed Railways

    https://doi.org/10.1142/S021945542550141XCited by:0 (Source: Crossref)

    High-speed railways are “lifeline projects” that shoulder the heavy responsibility of transporting relief supplies and medical forces for the first time after earthquakes. To ensure the train’s safety after earthquakes, it is of great urgency to ascertain a post-earthquake speed threshold. To that end, a target model for seismic irregularity emerges as a key parameter. In this paper, a null phase assumption-based technique for the mutual conversion between evolutionary power spectral density and non-stationary signal was proposed. Taking a high-speed railway track-bridge system as the research object, the target model of seismic irregularities was constructed based on the proposed technique. The rationality of the target model of seismic irregularities was verified, and the construction parameter settings were discussed. Moreover, a simplified frequency-domain fitting method for the target model of seismic irregularities was proposed based on the spectral decomposition theory. According to the research findings, the null phase assumption-based technique is capable of performing interconversion between seismic irregularity and its evolutionary power spectral density with satisfactory accuracy. It is recommended to set the minimum number of seismic irregularities, spatial sampling interval, hop size, and length of window function as 50, 0.25m, 1, and 40 to 100, respectively.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures