World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Penetration Resistance Mechanism and Damage Characteristics of Polyurea-Coated B4C Ceramic Plates

    https://doi.org/10.1142/S021945542550213XCited by:0 (Source: Crossref)

    A 12-mm caliber gas gun was used to launch a high-strength steel cylindrical projectile to impact a polyurea-coated B4C ceramic target plate to investigate the effects of the polyurea coating position and the thickness of the polyurea coating on the protective ability of the ceramic composite target plate, reveal the penetration resistance mechanism of the polyurea-coated B4C ceramic plate and protection mechanism of polyurea coating. The result showed that the ceramic cone top diameter of the composite target plate coated with polyurea on the front side was 52.4–60.5% lower than that of the uncoated ceramic target plate, and the ceramic cone bottom diameter was 0.2–4% lower than that of the uncoated ceramic target plate. For the same area density, the ceramic target plate coated with polyurea on both sides had the largest percentage of mass remaining and the smallest mass of dislodged ceramic fragments. In addition, composite target plates coated with polyurea on the back side and both sides significantly reduced the head velocity of the post-target debris cloud. The polyurea coating on the front of the target plate utilizes the strain rate effect to dissipate the kinetic energy of the projectile and inhibit the spallation of ceramic fragments toward the front of the target plate. The polyurea coating on the back of the target plate utilizes bulge deformation to dissipate the kinetic energy of the projectile and intercepts the scattering of the post-target debris cloud. The polyurea coating effectively reduces ceramic target plate damage and improves composite target plate integrity level and resistance penetration.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures