World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Secondary Resonances of Asymmetric Gyroscopic Spinning Composite Box Beams

    https://doi.org/10.1142/S0219455425502359Cited by:0 (Source: Crossref)

    A comprehensive theoretical investigation on the occurrence of secondary resonances in parametrically excited unbalanced spinning composite beams under the stretching effects is conducted numerically and analytically. Based on an optimal stacking sequence and Rayleigh’s beam theory, the governing equations of the system are derived using extended Hamilton’s principle. The system’s partial differential equations are then discretized using the Galerkin method. Numerical (Runge–Kutta technique) and analytical (multiple scales method) approaches are exploited to solve the reduced-order equations, and their results are compared and verified accordingly. Comparison and convergence investigations are performed to guarantee the validity of the outcomes. Stability and bifurcation analyses are accomplished, and resonance effects are thoroughly studied utilizing frequency-response diagrams, phase portraits, Poincaré maps and time-history responses. It is observed that among the various types of secondary resonance, only a combination resonance can be observed in the system dynamics. The outputs reveal that, in this resonance, the gyroscopic coupling results in the steady-state time response consisting of three main frequencies. By examining the effects of damping, eccentricity, and beam length, it is exhibited that this resonance does not occur in the system’s dynamics for any combination of these parameters. Therefore, these parameters can be adjusted in the design of asymmetric beams to prevent this type of resonance.

    Remember to check out the Most Cited Articles!

    Remember to check out the structures