Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Combined Use of Nonlinear Measures for Analyzing Pathological Voices

    https://doi.org/10.1142/S0219467824500359Cited by:1 (Source: Crossref)

    Automatic voice pathology detection enables an objective assessment of pathologies that influence the voice production strategy. By utilizing the conventional pipeline model as well as the modern deep learning-centric end-to-end methodology, numerous pathological voice analyzing techniques have been developed. The conventional methodology is still a valid choice owing to the lack of enormous amounts of training data in the study region of pathological voice. In the meantime, obtaining higher precision, higher accuracy, and stability is still a complicated task. Therefore, by amalgamating the nonlinear measure, the pathological voices are analyzed to abate such risks. The viability of six nonlinear discriminating measures derived from the phase space realm, involving healthy and pathological voice signals, is studied in this work. The analyzed parameters are Singularity spectrum coefficients (αmin, αmax,γ1 and γ2). Correlation entropy at optimum embedding dimension (K2m) and correlation dimension at optimum embedding dimension (D2m). Analyzing the pathological voices with better accuracy rates is the major objective of the proposed methodology. Here, the Support Vector Machine (SVM) was utilized as the classifier. Experimentations were performed on VOiceICarfEDerico (VOICED) databases subsuming 208 healthy, as well as pathological voices, amongst these 50 samples, were utilized. Here, the model obtained 97% of accuracy with 99% as of the classifier with Gaussian kernel function. Therefore, to differentiate normal as well as pathological subjects, the six proposed characteristics are highly beneficial; in addition, they will be supportive in pathology diagnosis.

    Remember to check out the Check out our Most Cited Articles!

    Check out these titles on Image Analysis