FCM with Spatial Constraint Multi-Kernel Distance-Based Segmentation and Optimized Deep Learning for Flood Detection
Abstract
Floods are the deadly and catastrophic disasters, causing loss of life and harm to assets, farmland, and infrastructure. To address this, it is necessary to devise and employ an effective flood management system that can immediately identify flood areas to initiate relief measures as soon as possible. Therefore, this research work develops an effective flood detection method, named Anti- Corona-Shuffled Shepherd Optimization Algorithm-based Deep Quantum Neural Network (ACSSOA-based Deep QNN) for identifying the flooded areas. Here, the segmentation process is performed using Fuzzy C-Means with Spatial Constraint Multi-Kernel Distance (MKFCM_S) wherein the Fuzzy C-Means (FCM) is modified with Spatial Constraints Based on Kernel-Induced Distance (KFCM_S). For flood detection, Deep QNN has been used wherein the training progression of Deep QNN is done using designed optimization algorithm, called ACSSOA. Besides, the designed ACSSOA is newly formed by the hybridization of Anti Corona Virus Optimization (ACVO) and Shuffled Shepherd Optimization Algorithm (SSOA). The devised method was evaluated using the Kerala Floods database, and it acquires the segmentation accuracy, testing accuracy, sensitivity, and specificity with highest values of 0.904, 0.914, 0.927, and 0.920, respectively.
Remember to check out the Check out our Most Cited Articles! |
---|
Check out these titles on Image Analysis |