World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Adversarial Detection and Fusion Method for Multispectral Palmprint Recognition

    https://doi.org/10.1142/S0219467825500366Cited by:1 (Source: Crossref)

    As a kind of promising biometric technology, multispectral palmprint recognition methods have attracted increasing attention in security due to their high recognition accuracy and ease of use. It is worth noting that although multispectral palmprint data contains rich complementary information, multispectral palmprint recognition methods are still vulnerable to adversarial attacks. Even if only one image of a spectrum is attacked, it can have a catastrophic impact on the recognition results. Therefore, we propose a robustness-enhanced multispectral palmprint recognition method, including a model interpretability-based adversarial detection module and a robust multispectral fusion module. Inspired by the model interpretation technology, we found there is a large difference between clean palmprint and adversarial examples after CAM visualization. Using visualized images to build an adversarial detector can lead to better detection results. Finally, the weights of clean images and adversarial examples in the fusion layer are dynamically adjusted to obtain the correct recognition results. Experiments have shown that our method can make full use of the image features that are not attacked and can effectively improve the robustness of the model.

    Remember to check out the Check out our Most Cited Articles!

    Check out these titles on Image Analysis