World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FLUCTUATION-INDUCED LOCAL OSCILLATIONS AND FRACTAL PATTERNS IN THE LATTICE LIMIT CYCLE MODEL

    https://doi.org/10.1142/S0219477503001312Cited by:3 (Source: Crossref)

    The fractal properties of the Lattice Limit Cycle model are explored when the process is realized on a 2-dimensional square lattice support via Monte Carlo Simulations. It is shown that the structure of the steady state presents inhomogeneous fluctuations in the form of domains of identical particles. The various domains compete with one another via their borders which have self-similar, fractal structure. The fractality is more prominent, (fractal dimensions df < 2), when the parameter values are near the critical point where the Hopf bifurcation occurs. As the distance from the Hopf bifurcation increases in the parameter space the system becomes more homogeneous and the fractal dimension tends to the value df = 2.