World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NOISE ANALYSIS IN STUDIES OF PROTEIN DYNAMICS AND MOLECULAR TRANSPORT

    https://doi.org/10.1142/S0219477504001641Cited by:7 (Source: Crossref)

    Understanding the role of noise at cellular and higher hierarchical levels depends on our knowledge of the physical mechanisms of its generation. Conversely, noise is a rich source of information about these mechanisms. Using channel-forming protein molecules reconstituted into artificial 5-nm-thick insulating lipid films, it is possible to investigate noise in single-molecule experiments and to relate its origins to protein function. Recent progress in this field is reviewed with an emphasis on how this experimental technique can be used to study low-frequency protein dynamics, including not only reversible ionization of sites on the channel-forming protein molecule, but also molecular mechanisms of 1/f-noise generation. Several new applications of the single-molecule noise analysis to membrane transport problem are also addressed. Among those is a study on antibiotic translocation across bacterial walls. High-resolution recording of ionic current through the single channel, formed by the general bacterial porin, OmpF, enables us to resolve single-molecule events of antibiotic translocation.